
Implementation of the communication protocols SPI 

and I2C using a FPGA by the HDL-Verilog language 

Tatiana Leal-del Río1, Gustavo Juarez-Gracia1, L. Noé Oliva-Moreno2 

1 CICATA, Legaria, México 
2 ESCOM, México 

mileydy.1125@gmail.coma, agjuarez@ipn.mxb,loliva@ipn.mx 

Abstract. Currently, the most used serial communication protocols to exchange 

information between different electronic embedded devices are the SPI and 

I2C. This paper describes the development and implementation of these proto-

cols using a FPGA card. For the implementation of each protocol, it was taken 

into account different modes of operation, such as master/slave mode sending 

or pending data mode. For the implementation of the I2C protocol was neces-

sary to perform a tri-state buffer, which makes a bidirectional data line for a 

successful communication between devices, allowing to take advantage of 

these sources provided by the FPGA. Verilog is a hardware description lan-

guage better known as HDL and it was used in the work to implement and sim-

ulate these communication protocols with the software version 14.7 of Xilinx 

ISE Design Suite. 

1   Intorduction 

Nowaday the integration of different embedded electronic modules include at least 

some of these functions: intelligent control, general purpose circuits, analog and digi-

tal I/O data ports, volatile memories (RAM), non-volatile memories (EEPROM, 

FLASH), real time clocks, ADC, among others. The integration is possible because of 

the development of different kind of wired and wireless communications. 

The integrated circuit peripherals allow for the interaction among electronic devic-

es for exchanging data, either the integrated circuit performs the default connection 

tasks or has to be implemented by software. 

The wired communication protocols SPI e I2C are important for this work, so this 

paper summarizes their main features. 

I2C (Inter-Interface Circuit). The I2C bus uses a bit in the device address to indi-

cate read or write operations. The Master transmits the Slave’s Address and a Read or 

Write bit to indicate the direction of the transfer. The I2C bus can be either a single-

master or multi-master. Each electronic embedded device has a unique 7-bit or 10-bit 

address and it is limited to 8 bit’s transfers. The I2C supports three basic modes of 

operation providing different levels of performance and device’s address map-

ping: standard mode (up to 100 Kbits/sec, 7 bit addressing); fast mode (up to 400 

Kbits/sec, addressing between 7 to 10 bits); high-speed mode (up to 3.4 

Mbits/sec, addressing between 7 to 10 bits) [1] [2]. 

31 Research in Computing Science 75 (2014)pp. 31–41; rec. 2014-06-19; acc. 2014-07-21

mailto:mileydy.1125@gmail.com


SPI (Serial Protocol Interface). The SPI bus is a 4-wire full-duplex interface syn-

chronous serial data link [3]. Indeed, it is a (3+N)-wire interface where N is the num-

ber of devices connected to a single master device on the bus. Only one master can be 

active on the bus. Unlike I2C, SPI supports a transfer size of integer multiples of 8 

bits. Technically the SPI bus shift register’s length limits the size of the data transfers. 

The SPI bus can support a variety of transfer speeds but the bus is limited by the 

system´s clock. The SPI interface is generally is able data rates of several Mbits/sec. 

This paper describes the procedure used to implement the synchronous serial 

communication protocols SPI and I2C by means of the hardware programming lan-

guage Verilog HDL (Hardware Description Language). 

The outline of this paper is divided in four sections. Section 2 discusses the re-

search course; section 3 illustrates the methods used in the development of this work. 

Section 4 reports the obtained results and conclusions. 

2   Justification 

There are many software applications developed in the implementation of the commu-

nication protocols SPI and I2C [4] [5] [6] [7]. In general, these researches are focused 

on the comparisons and implementations of different architectures in order to meet 

characteristics required by current technologies. 

In 2006, Oudjida et al., developed a code to implement to medium/low speed a 

transmitter slave I2C in a VLSI-architecture that allowed meeting some requirements 

that were not implemented in other systems such as drive noise filtering, a data unit, a 

unit equipment side interface, a control unit, among others [4]. 

More recently, in 2009 Oudjida et al., present an implementation of the SPI and 

I2C protocols in different FPGA devices, to help designers choose the right architec-

ture for their system. To do this, they designed the code in Verilog (according to each 

protocol) for the slave SPI and I2C to the different FPGA devices, comparing their 

functionality in response times and clock settings, concluding that logic can predict 

certain behaviors for master devices from the results of the slaves [5]. 

Then in 2011 Lazaro et al., presented a new design in Verilog I2C protocol, focus-

ing on the security of the electronic communications devices, integrating AES-GCM 

authentication and encryption algorithms [6]; To do this, they adapted the features of 

the I2C protocol with authentication techniques and encryption of data, comparing the 

final design with the original protocol, and they concluded that their work reduces the 

overhead of data flow and it is easily implemented in FPGA. 

Zhou et al., developed a verification environment of complex electronic systems 

from the master SPI interface, and integrate Verilog with object-oriented program-

ming (OOP). To achieve this, they started with the functional description of the re-

quirements for the master SPI and environment design, and they implemented the 

APB controller in OOP classes [7]. The SPI Master interface was developed and im-

plemented in FPGA Verilog. 

Finally, it is important to note that in the above-mentioned works, the designers 

have used the method of hardware description (Verilog HDL), which helps to imple-

32

Tatiana Mileydy Leal del Río, Luz Noé Oliva Moreno and Antonio Gustavo Juárez Gracia

Research in Computing Science 75 (2014)



ment and to model the concurrent behavior of the electronic embedded devices, espe-

cially when it is a new architecture design [8]. 

3   Methods 

For the realization of this article, it was taken into account certain key features of the 

standard communication protocols SPI and I2C [1] [2] [3] for implementing them in a 

FPGA, by using Verilog programming language. The methodology developed for 

each protocol is presented below. 

3.1 SPI protocol 

The following features were taken into account for implementing in a FPGA: 

 The clock signal (CLK_3) that works at the speed of 3.6Mhz, generated by 

the master module (which may vary according to the criterion of designer). 

 The data signal (SDA), which can be read and / or written by the master or 

the slave. 

 The control signal (CS) enables in the low state and disables in the high state 

the slave communication. 

 MOSI calls the master by sending data and the slave by receiving data. 

 MISO calls the master by receiving data and the slave by sending data. 

 The MOSI / MISO communication ends with the positive transition of CS. 

 The master clock signal sets polarity (CPOL) and phase (CPHA) to "1". 

 The master transmits data with positive edge, and receives with negative edge 

of CLK_3. 

 The slave receives with the negative edge, and transmits with positive edge of 

CLK_3. 

3.2 I2C protocol 

The following features were taken into account for implementation in FPGA: 

 The clock signal (SCL) is set at the frequency of 396Khz. (the frequency can 

be modified according to the standard: 100Khz/400Khz and 3.4Mhz). 

 The data signal (SDA) is a bidirectional line, which can be read and written, 

by the master and the slave. 

 The communication between a master and a slave begins with a START 

condition followed by the slave address to be reached, one read/write bit, a 

bit of recognition that can be ACK (if the communication was successful) or 

NACK (if the communication was unsuccessful or the end of the message is 

set by the master), the 8 bits of data to send or to receive, the ACK or NACK 

bit, and finishes with a STOP condition or a condition Repeated START. 

33

Implementation of the communication protocols SPI and I2C using a FPGA ...

Research in Computing Science 75 (2014)



 If there is no communication between a master and a slave, the data and 

clock signals remain in the high impedance state. 

 The protocol neither implements the designed multi-master function, nor the 

extension function clock, nor the sending and receiving of more than one da-

tum. 

 Each master and slave manages two operating modes: receive and send data. 

 The slave address is 7-bits length. 

 If the master receives a non-recognized signal by the slave, a STOP condi-

tion is generated. 

 When the master or the slave does not acknowledge the received data, both 

the clock and the data signals change to the high impedance state and thus 

releasing the bus. 

 

Below shows part of the code developed for the I2C master and slave. The master 

code is showing a read operation of 8-bit data, the generation of the SDA and SCL 

(bidirectional) signals using a tri-state buffer.  

The slave code shows an example of the writing operation ACK bit in the SCL line 

using a tri-state buffer. To synchronize data from the slave, reading has handled SDA 

data on the rising edge of SCL, and for writing the data on SDA, has handled the 

falling edge of SCL. 

 
 

//***********************************// 

//MASTER I2C CODE VERILOG 

//***********************************// 

 

`timescale 1ns / 1ps 

 

module maestro(SDA,SCL,clk_50,Dir_esclavo, 

Data_out,RW,ACK,NACK,contador_32,clk_3,scl_out_1,scl_out); 

 

inout SDA;         // bidirectional SDA line 

inout SCL;         // bidirectional SCL line 

parameter sda_in = 0; 

parameter sda_in_1 = 0; 

input clk_50;      //frequency 50Mhz FPGA 

reg [0:6]Dir_modulo = 7'b0011011;   

reg [0:7]Data_in = 8'b01011010;   

input RW;     //read/write line  

reg [0:7]prueba = 8'b11011110; 

output reg [0:7]Data_out = 0;    

output reg ACK = 0;   

output reg NACK = 0; 

reg sda_out = 0; 

reg sda_z = 0; 

output reg scl_out_1 = 0; 

output reg scl_out = 0; 

reg scl_z = 0; 

reg control_scl = 0; 

reg control_sda = 0; 

output reg clk_3 = 0; 

//frequency divider counter FPGA 

reg [7:0]contador_div = 0;  

//read/write data counter 

34

Tatiana Mileydy Leal del Río, Luz Noé Oliva Moreno and Antonio Gustavo Juárez Gracia

Research in Computing Science 75 (2014)



output reg [4:0]contador_32 = 0;   

reg [0:7]Dato_Esperado = 8'b00000000;   

reg [0:6]direccion_modulo = 0;   //control flags  

reg ACK_MTx= 0; 

reg ACK_MRx= 0; 

reg NACK_MTx= 0;  

reg NACK_MRx= 0;  

reg bd_ACK = 0; 

reg bd_NACK = 0; 

reg bd_ACK_MRx = 0; 

reg bd_NACK_MRx = 0; 

 

//*********THIRD STATE LINE********// 

 

assign SCL = control_scl ? 1'bz : scl_out; 

assign SDA = control_sda ? 1'bz : sda_out; 

//************************************// 

 

always@(posedge clk_50) begin 

//operating frequency 396KHz  

contador_div = contador_div +1; 

if(contador_div == 67) clk_3 =~ clk_3;   

if(contador_div == 68) contador_div = 0;   

end  

 

always@(negedge clk_3) begin                

contador_32 = contador_32 + 1;             

end 

 

always @(contador_32) begin  

//START  

if(contador_32<2 ) begin   

control_sda = 1; 

bd_ACK = 0; bd_NACK = 0;   

bd_ACK_MRx = 0;  

bd_NACK_MRx = 0;    

direccion_modulo = Dir_modulo;  

ACK = 0; NACK = 0;  

ACK_MRx = 0;  

ACK_MTx = 0; 

end  

if(contador_32 == 2) begin   

control_sda = 0; 

sda_out = 1'b0; 

end 

if(contador_32>2 && contador_32<10) begin 

sda_out = Dir_esclavo[contador_32-3];  

end 

if(contador_32 == 10)    

sda_out = RW;  

if(ACK_MRx == 1 && contador_32 == 12 && RW == 0) 

 begin 

sda_out = 1'b0; control_sda = 0; 

 end  

 if(ACK_MRx == 1 && contador_32 == 13 && RW == 0)          

bd_ACK_MRx = 1;   

if(ACK_MRx == 1 && contador_32 > 13 && RW == 0)      

control_sda = 1;  

35

Implementation of the communication protocols SPI and I2C using a FPGA ...

Research in Computing Science 75 (2014)



if(contador_32 > 11 && contador_32 < 20 && ACK_MRx == 0 && RW == 0) 

begin 

Data_out[contador_32-12] = prueba[contador_32-12];  

control_sda = 0;  

sda_out = prueba[contador_32-12];  

end 

if(contador_32 == 20 && RW == 0 && ACK_MRx == 0 && Data_out == 

Dato_Esperado) begin  

control_sda = 0; 

NACK = 1; 

NACK_MRx = 1;     

sda_out = 0;      

end 

if(contador_32 == 20 && RW == 0 && ACK_MRx == 0 && Data_out != 

Dato_Esperado) begin  

control_sda = 0; 

NACK = 0;  

NACK_MRx = 0;      

sda_out = 0; 

end 

if(ACK_MRx == 0 && NACK_MRx == 1 && contador_32 == 21 && RW == 0)begin    

sda_out = 1'b0; 

control_sda = 0;    

bd_NACK_MRx = 0;  

end 

if(ACK_MRx == 0 && NACK_MRx == 0 && contador_32 == 21 && RW == 0) begin  

sda_out = 0'b0;    

bd_NACK_MRx = 1;  

end    

if(contador_32 > 2 && contador_32 < 22 && (RW == 1 && bd_ACK == 0 && 

bd_NACK == 0))begin 

control_scl = 0; end 

else begin 

control_scl = 1;   

scl_out_1 = 0; 

end 

if(contador_32 >= 22)  

control_sda = 1;   

end  

 

always @(clk_3) begin 

 scl_out = (scl_out_1 & clk_3); 

end;  

 

endmodule 

 

//***********************************// 

//SLAVE I2C CODE VERILOG 

//***********************************// 

 

`timescale 1ns / 1ps 

 

module esclavo (SDA,SCL,Direccion_Eslave,Direccion_Master,b_D); 

 

inout SDA;   // bidirectional SDA line 

input SCL;   // bidirectional SCL line 

input[0:6]Direccion_Eslave; 

reg [0:6]Direccion_Eslave_1 = 0;  

reg control_sda = 1; 

reg control_sda_p = 1; 

36

Tatiana Mileydy Leal del Río, Luz Noé Oliva Moreno and Antonio Gustavo Juárez Gracia

Research in Computing Science 75 (2014)



reg control_sda_n = 0;  

output reg [0:6]Direccion_Master = 0; 

output reg b_D = 0; 

reg [0:7]Data_in_Eslave = 0; 

reg [0:6]prueba = 7'b0101011; 

//synchronization counters 

reg [4:0]contador_32=0; 

reg [4:0]contador=0; 

reg RW = 0;     //read/write register 

//control flags 

reg ACK = 0; 

reg NACK = 0; 

reg b_ACK_Rx = 0;  

reg b_NACK = 0;   

reg b_ACK_Rx_1 = 0;  

reg b_NACK_1 = 0; 

 

//*********THIRD STATE LINE********// 

assign SDA = control_sda ? 1'bz : 1'b0; 

//***********************************// 

 

always @(posedge SCL) begin  //read data SDA 

contador_32 = contador_32 + 1; 

if(contador_32 == 1) begin 

b_D = 0; 

b_NACK = 0;  

b_ACK_Rx = 0;  

control_sda_p = 1;    

end 

  if(contador_32 >= 1 && contador_32 < 8 ) begin 

Direccion_Master[contador_32-1] = SDA;     end 

 if(contador_32 == 8 ) begin 

RW = SDA;   

 if(contador_32 == 8 && Direccion_Master == Direccion_Eslave_1 ) begin 

  b_D = 0;  

  b_ACK_Rx = ACK;  

 end 

 if(contador_32 == 8 && Direccion_Master != Direccion_Eslave_1 ) begin 

  b_D = 1;  

  b_ACK_Rx =~ ACK;  

 end 

 if((contador_32 == 10 ) || (contador_32 == 19 && b_ACK_Rx == 0 && 

b_NACK == 1))begin  

  contador_32 = 0;  

  control_sda_p = 1; 

 end  

 if(contador_32 == 0 && SCL == 0) Direccion_Eslave_1 <= 

Direccion_Eslave;  

end 

 

always @(*) begin 

 control_sda = ~(control_sda_n^control_sda_p); 

end 

 

always @(negedge SCL) begin //write data SDA 

contador = contador + 1;  

 if(contador == 9 && SCL == 1 )  

    control_sda_n = 0;  

 if(contador == 10) contador = 0; 

 if(contador != 9) control_sda_n = 1; 

37

Implementation of the communication protocols SPI and I2C using a FPGA ...

Research in Computing Science 75 (2014)



end 

 

endmodule

 

The communication protocols master/slave SPI and I2C were implemented in two 

Spartan 3-E FPGA’s of 500 and 1200 system gates of the Xilinx [9]. This work was to 

implemented with the software version 14.7 of Xilinx ISE Design Suite. 

4   Results 

The following figures were obtained from the Verilog code and the physical imple-

mentation into a FPGA. 

Fig. 1 shows the CLK_3, SDA and CS signals generated by the master using the 

SPI module. The data writing process occurs when the CS signal from slave is in the 

low state. 

 

 

 

Fig. 1. SPI master write 

 

In Fig. 2, the SDA and SCL signals from the I2C protocol are shown. Here we ob-

serve the non-recognition of the address (ACK) from the slave (counter 9). The com-

pletion of the communication happens when a STOP condition is performed by the 

master (counter 10). 

The case in which the master writes data to the slave is shown in Fig. 3. The com-

munication ends when the master receives the NACK bit written by the slave SDA, 

which generates the STOP condition. 

In Fig. 4 we observe a similar case as that shown in Fig. 3 but with the difference 

that the slave does not acknowledge the data sent by the master. The communication 

ends with the setting the SDA and SCL signals to the high impedance state by the 

master after the bit NACK. 

38

Tatiana Mileydy Leal del Río, Luz Noé Oliva Moreno and Antonio Gustavo Juárez Gracia

Research in Computing Science 75 (2014)



 

Fig. 2. The I2C signal from slave does not respond to the address sent by the master 

 

 

Fig. 3. Correct I2C communication between a master and a slave 

5   Conclusions 

In the development and implementation of the SPI and I2C protocols into a FPGA, the 

following conclusions were obtained: 

 Verilog is a high level programming language that runs concurrently, to the 

difference with other programming languages that work sequentially as those 

used by microcontrollers, so it performs a faster and more efficient commu-

nication when implementing the SPI and I2C communication protocols. 

 The developed code for the implementation of the I2C protocol is more ro-

bust and complex compared to the developed for the SPI protocol, due to the 

39

Implementation of the communication protocols SPI and I2C using a FPGA ...

Research in Computing Science 75 (2014)



number of events to take under consideration in communicating devices such 

as the start and the stop conditions, bit recognition, and read/write data on 

bidirectional lines. 

 

 

Fig. 4. The slave does not recognize the data sent by the master 

 It is needed to set at least two operating conditions for input and output data 

in, each device acting as master or slave for a correct reading and / or writing 

process between them, because it is not possible to ensure an ideal behavior 

in the rising and falling edges of the signals, which are necessary for the exe-

cution of the code. 

 A tri-stated buffer is implemented in the I2C slave for reading and 

writing data to the bidirectional SDA line, besides the high impedance 

statehood protects the FPGA peripherals against the phase shift 

operation signals. 

 In the I2C slave, it is necessary to consider the lag introduced in the SDA and 

SCL signals at the time of writing the data, because the reading process oc-

curs in the rising edge and the writing process occurs in the falling edge of 

the clock signal, so that these match the structure of the data line SDA. 

References 

1. J. Irazabel y S. Blozis, Philips Semiconductors, “I2C-Manual,” Application Note, ref, 

AN10216-0, March, vol. 24, 2003. F. S. Motorola y S. B. Guide, V03. 06, February 2003, 

Freescale Semiconductor Inc. 

2.  I2C-bus specification and user manual, Rev, vol. 3, p. 19, National Semiconductors, 2007.  

3. Freescale Motorola Semiconductors Guide, V03. 06, February 2003, Freescale 

Semiconductor Inc. 

4. A. K. Oudjida, A. Liacha, D. Benamrouche, M. Goudjil, R. Tiar y A. 5. Ouchabane, 

Universal low/medium speed I2C-slave transceiver: a detailed VLSI implementation, 

International Conference on Design and Test of Integrated Systems in Nanoscale 

Technology, 2006. DTIS 2006, 2006.  

40

Tatiana Mileydy Leal del Río, Luz Noé Oliva Moreno and Antonio Gustavo Juárez Gracia

Research in Computing Science 75 (2014)



5.  A. K. Oudjida, M. L. Berrandjia, R. Tiar, A. Liacha y K. Tahraoui, FPGA implementation 

of I2C & SPI protocols: A comparative study, Electronics, Circuits, and Systems, 2009. 

ICECS 2009. 16th IEEE International Conference on, 2009. 

6.  J. Lazaro, A. Astarloa, A. Zuloaga, U. Bidarte y J. Jimenez, I2CSec: A secure serial Chip-

to-Chip communication protocol, Journal of Systems Architecture, vol. 57, n. 2, pp. 206-

213, 2011. 

7.  Z. Zhou, Z. Xie, X. Wang y T. Wang, Development of verification envioronment for SPI 

master interface using SystemVerilog, 2012 IEEE 11th International Conference on Signal 

Processing (ICSP), 2012. 

8.  R. Dubey, Introduction to embedded system design using field programmable gate arrays, 

Springer, 2009. 

9.  Xilinx Inc., Spartan-3E FPGA Family Data Sheet, DS312 Product specification, 2013, 

http://www.xilinx.com/support/documentation/data_sheets/ds312.pdf 

 

41

Implementation of the communication protocols SPI and I2C using a FPGA ...

Research in Computing Science 75 (2014)

http://www.xilinx.com/support/documentation/data_sheets/ds312.pdf

